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Analysis of long crack lines in paper webs
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Abstract. We analyze 6500 mm long fracture lines of paper as an example of crack propagation involving
disorder. The cracks are asymptotically self-affine, with a roughness exponent close to 0.6. Systematic
deviations from the power-law-scaling exist below a lengthscale related to the microscopic heterogeneities
and possibly to a cross-over from 3d to 2d crack propagation. Several analysis methods are discussed,
including first return analysis and the detection of correlated trends.

PACS. 62.20.Mk Fatigue, brittleness, fracture, and cracks – 81.40.Np Fatigue, corrosion fatigue,
embrittlement, cracking, fracture and failure – 05.40.-a Fluctuation phenomena, random processes, noise,
and Brownian motion – 62.20.Fe Deformation and plasticity (including yield, ductility, and superplasticity)

1 Introduction

In the end of any tensile test a crack propagates through
the sample and thus a fracture line is created. The rupture
process is decisive to properties of the crack line [1,2], par-
ticularly in the presence of disorder. Local stiffness vari-
ations, narrowing of stress field with increasing crack ve-
locity, and coalescing of microcracks can all interact, in a
mostly unknown manner.

Paper is an example of an industrial product with
many kinds of structural non-uniformity [3]. Starting from
the fiber network structure, the positions and orientations
of fibers are random. The fibers are 1–3 mm long. There
are 10–20 layers of fibers in an ordinary paper of typi-
cal thickness 100 µm. Thus the sheet structure becomes
quite uniform over areas of the order of 1 mm2. At smaller
scales, paper is a three-dimensional porous material whose
structure is controlled by the width (2–10 µm) and thick-
ness (10–50 µm) of fibers [4]. At these small length scales
the rupture of paper involves interfiber bond rupture and
fiber pull-out competing with fiber rupture [5]. The effect
of fiber properties and sheet structure on paper strength
can be described for engineering purposes using linear
elastic fracture mechanics modified to account for the
plastic yielding that arises from the gradual debonding of
fibers [6]. At fiber lengths and above, 1–10 mm, the mass
distribution of paper is non-uniform because of floccula-
tion. This non-uniformity is easily seen in the “grainy” or
“cloudy” pattern when viewing e.g. a copy paper against
light. The variation is usually rather weak, below 10 %
of the mean mass. Due to the manufacturing process,
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the non-uniform mass distribution is connected with non-
uniform residual stresses, and the combination of the two
controls the crack line pattern that is created when one
tears a paper sheet apart. In general the behavior of pa-
per is brittle and nearly linearly elastic for strains upto
1%. The elastic properties and breaking thresholds ex-
hibit variations at all length scales from 1 cm up to the
width of the full paper machine web, 10 m. As a material
it presents a good example of the influence of disorder, in
a quasi 2d geometry, and for instance the possible relation
of crack surface roughness and fracture toughness would
be of practical and theoretical interest [7].

Especially interesting from the statistical physics view-
point are crack line properties that obey power-law behav-
ior, a concept launched by Mandelbrot and co-authors in
the 80’s [1]. The most classical feature is the fact that
mechanisms producing power-laws do not have any char-
acteristic scale. Self-affinity or fractal dimension is an ex-
ample of power-law phenomenon observed experimentally
in several fronts. Because of complicated microstructure,
in the case of paper the a actual self-affinity has not been
proved conclusively [8,9]. Computer simulation has been
used for simple models to study 2d fractography. This is
due to the ease of such models, both conceptually and
numerically given the existence of suitable methods for
solving the systems of equations. Examples are random-
fuse, random-beam, and random-fiber models [10]. The
outcome of Monte-Carlo computer simulations is usually
a crack line with a variable amount of branching, and one
should keep in mind that the stress-strain behavior used
is able to mimic only materials with extreme brittleness
(like glass) [11].
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Simulations of 2D statistical models give rise to power-
laws that result in roughness exponents χ in the range 0.7
to 0.85 for slow, quasi-static fracture [10]. The exponent χ
can be measured by many different statistical aspects of
crack lines, as discussed below. For minimum (fracture)
energy surfaces the roughness exponent is 2/3, exactly,
while numerical simulations of random fuse networks re-
sult in values close to that (about 0.7) [10]. These are both
in contrast to beam networks where typically somewhat
larger exponents are obtained. In analogy, it is of interest
to explore the range of true power-law scaling in paper,
and its relation to the formation or evenness of paper.

All possible choices of χ (expected on the basis of dif-
ferent universality classes) of roughness exponent χ would
usually lie between 0.5 and 0.9. Only a few 2d experi-
mental values have been established [12], including a set
of exponent values by Kertesz et al. [9]. They observed
for 300 mm wide tensile test sheets of paper a Hurst ex-
ponent between 0.63 and 0.72. This range of values for
roughness exponent for paper stressed in machine direc-
tion is as such large. They also suggested that due to
entanglement the fibers are forced to break even though
their strength is much higher than the strength of bonds.
Kertesz et al. also proposed that bond breakages are the
origin of plasticity. This is in contradiction with the com-
mon belief, that very few breakages take place before the
maximum stress despite sometimes high, order of 0.3 per
cent, amount of plastic strain.

Bouchaud suggested in her review that 3d materi-
als give always an asymptotic global roughness exponent
0.8 [2], and that for slow fracture, at very small length
scales the exponent value can be smaller, of the order
of 0.5. The time-dependent behavior would be a conse-
quence of crack front pinning/depinning. In this situa-
tion the external force is close to a critical force so that
the crack is just able to free itself from microstructural
obstacles. The higher the crack velocity the smaller is
the length-scale that separates the depinning transition
regime and universal roughening regime. It might also be
so that the correlation length, the limit of power law be-
havior matches with the largest heterogeneity of the mate-
rial. Notice that such ideas are relevant for slow fracture,
but for time-dependent roughening processes the possible
theoretical outcomes are mostly unknown.

The effect of the velocity of the crack tip [13], and the
length of possible pinning periods have been widely dis-
cussed in literature in the context of fast fracture [14,15].
Rapid crack advancement is usually proposed to produce a
straight crack path, but in particular one should note that
the experiments have been performed on brittle materials
(e.g. PMMA) with weak disorder. In addition to conven-
tional rupture line analysis some indirect measurements
are possible. The propagation of crack can be monitored
by acoustic emission, and in some special cases the origin
of the sound, the position of cracktip, can be traced [15].

During statistical analysis of rupture lines the question
of tilt removal arises and should by handled carefully [16].
This means that the fracture surface can have macroscopic
trends that may or may not be connected to the mecha-

nism that leads to roughening. Subtracting the difference
of the end-and-start points (or removing a linear trend)
is not necessarily sufficient or justified, and can overrule
underlying details. Fortunately for small sample sizes, typ-
ical in microscopic studies, the existence of such trends is
unimportant.

Due to the multitude of open questions it is worth con-
sidering the simplest model for the formation of fracture
lines: a plain random walk (RW) of the crack tip in the
direction transverse to its propagation. This limit can be
taken if the inhomogeneity of the stress-field of the whole
crack can be neglected. In the opposite limit, the process
could resemble in the quasi-static limit a Laplacian ran-
dom walk [17]. A RW represents a Markov process that
has equal and independent jump probabilities to all prin-
cipal directions, in particular here along the crack axis and
perpendicular to that. If the roughening of a 2D fracture
line would be described by random walk one would get
a χ = 1/2, possibly masked by the fact that the events
involve certain length-scales, e.g. the fracture leaps men-
tioned above. The masking would reflect the microscopic
character of the medium, here paper, and is not a priori
reproduced by a RW. If one considers the crack surface as
a trail of the crack tip, one can compare the increments in
the discrete height profile hi. Deviations from a random
walk imply that some combination of the following effects
is at play: 1) the increments have a very wide distribution
(as in Lévy-walks), 2) the increment amplitudes are corre-
lated, and 3) the signs of the increments have correlations
(e.g. as in fractional Brownian motion). In cases 2) and 3)
the correlations have to be decay slowly enough to change
the scaling from a simple RW.

In this paper we discuss the roughness of cracks using
three paper samples obtained from two industrial paper-
machines. In the next section, we describe the situation
from which the samples were obtained, and the proce-
dure to obtain the crack line to be analyzed. Section 3
discusses the results concerning the roughness properties.
Our main results are i) the existence of short-range (SR)
effects on a scale that relates to a cross-over to 2d prop-
agation, and ii) asymptotic self-affine scaling. The final
section finishes the paper with conclusions.

2 Samples

The whole 6.5 m wide paper web was broken by hitting
the edge of the web with a rod just before the reeling.
The “pulling” end of the paper web could be collected af-
terwards from the reel surface. This gave us practically
wrinkle-free crack-line specimens that span across the
whole web. The macroscopic stress state during the crack
propagation is complicated because the web movement
(at ca. 20 m/s) gives rise to out-of-plane disturbances
(“flutter”). The random dynamic disturbances may have
influenced the crack lines and contributed to the differ-
ences between the samples at large length scales. The
whole rupture process takes less than 1 s, giving a lower
bound of 10 m/s for the crack velocity. This is far below
the Rayleigh-velocity, but one should note that the breaks
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1 mm

Fig. 1. Example of crack line detection (crackline 1). The
image width 10 mm. The detected edge is marked by a dark
line which is shifted for clarity by 0.6 mm downwards.

are nonetheless unstable because the whole web ruptures
always when one applies even a small cut at the edge.

The two paper machines use the same fibrous raw ma-
terial. There are only small (10%) differences in the mean
mechanical properties of the papers that are produced on
the two paper machines and the ranking of the samples
depends on the property concerned. It is therefore proba-
ble that the eventual differences in the crack line proper-
ties arise either from the machine-induced inhomogeneities
above 1 mm, or from the uncontrolled tension variations
and out-of-plane deviations (“fluttering”) of the web.

We study various statistics of the height profiles of the
rupture lines. Each crack line is scanned with a flatbed
scanner of 600 dpi resolution with 256 gray levels and a
black background. The complete crack line is composed of
about 30 individual images. Images overlap slightly and
are merged so that angle between images is taken into ac-
count. The difficulties in joining images may produce some
distortion, but such errors are considered to be negligible.
The crack line is detected by thresholding gray level gradi-
ent. First we calculate the histogram of gray values. Since
the paper is white and the images are taken with a black
background, we search for the deepest valley between the
histogram peaks of the paper and the background. If sev-
eral crack branches are present we choose the outmost one.
The so-called solid-on-solid approximation is also applied.
By this practice we are able to extract the single-valued
crack line with minimal assumptions. Figure 1 shows a
sample of one of the cracklines, on a scale that allows to
observe the variation of the grey levels across the crack.
Superimposed on the plot there is the actual crackline as
constructed by the thresholding method. Note the absence
of any single-fiber related effects in the final profile, in par-
ticular overhangs due to fibers sticking out of the crack.

The crack lines consist of about 160 000 points, each
point corresponding to 0.042 mm. With this resolution we
cannot distinguish individual fiber ends sticking out of the
crack line and therefore cannot see the small “overhangs”
that the randomly oriented fiber ends create [18]. Crack
line branching is only moderate, contrary to some com-
puter simulations. We do not quantify the phenomenon,
but note that of the order of 1 short (less than 10 mm)
branches are found per 1 meter of the backbone of the rup-
ture line. The crack lines show variation in different length
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Fig. 2. Crack lines for all the samples.

scales (Fig. 2). Any kind of analysis we applied was unable
to distinguish the crack propagation direction.

The extracted crack line is analysed as a 1-d series. The
global mean height is subtracted before any amplitude
sensitive measurements. We consider the crack lines with
several different methods. First we calculated the rough-
ness and roughness exponent then we introduce several
other ideas for analysis. Note that no time information
(temporal) is available, thus in this study we only discuss
the a posteriori rupture properties.

3 Fracture surface properties

The roughness i.e. standard deviation of height vs. mea-
surement window size l is a simple way to measure the
shape of crack line. The power-law nature of rough-
ness makes it possible to determinate the roughness ex-
ponent χ. Unfortunately that method is vulnerable to
anomalies in data [16]. Distortions like global tilt, or peri-
odic oscillations can affect the slope determination. Other
methods of roughness exponent estimation like zmax, re-
turn probability, Fourier Power Spectrum, and wavelet
analysis are also available [2]. In practice the roughness
exponent χ is handy, but quite an inaccurate measure of
fractal properties.

The max difference method is grounded on the fact
that the difference between the lowest and highest value
within certain window r scales as a function of the window
size with the relationship zmax ∼ rχ [2]. This method is
painless and in general reliable, but can be distorted by
tilts on very large scales, above any correlation length. Fig-
ure 3b shows roughness with maximum difference i.e. zmax

method. The bumps (in Fig. 3a) or the change of slope
(Fig. 3b) on the scale of 1 to 5 mm could arise from either
the non-uniformity of mass distribution or from a cross-
over between three-dimensional fracture surfaces at small
scales and two-dimensional crack lines at large scales.

The Fourier power spectrum measures the amplitude
of oscillations, thus it is evident that the roughness expo-
nent can be easily extracted. Contrary to Fourier analysis,
the wavelet analysis can obtain both spatial and spectral
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Fig. 3. Roughening of crack lines by standard deviation-
method and zmax-method.

Table 1. Roughness exponent χ with different methods.

Method Sample 1 Sample 2 Sample 3
Standard dev. 0.63 ± 0.03 0.53 ± 0.02 0.665 ± 0.009
Wavelet 0.62 ± 0.02 0.539 ± 0.005 0.619 ± 0.008
Power Spect. 0.61 ± 0.10 0.51 ± 0.06 0.64 ± 0.09
Zmax 0.634 ± 0.007 0.53 ± 0.02 0.664 ± 0.004
DFA 0.698 ± 0.005 0.61 ± 0.06 0.666 ± 0.004
Average 0.64 ± 0.03 0.54 ± 0.04 0.65 ± 0.02

resolution simultaneously. The wavelet analysis is however
less simple to interpret [19]. The tilts and average height
can give some distortion to both Fourier and wavelet anal-
ysis, since the resulting coefficients represent literally the
original data sequence. Finally we apply the detrended
fluctuation analysis (DFA) [20] to the data. This is based
on dividing the available data series into windows, and
subtracting in each of these the trend, locally. The results
of the method turn out to be analogous to the other tech-
niques employed.

For the roughness exponent we obtain the values 0.64
± 0.03 , 0.54 ± 0.04 and 0.65 ± 0.02 for samples 1, 2,
and 3, fitted over the most of the range of available data.
The error estimates are based on the variation with the
fitting window choice (Tab. 1). The more local values of χ
are typically equal to the “global ones” (maximal window)
and the variation is order of ±0.05 if constrained upto a
700 mm wide window. For very large length-scales χ varies
by about 0.05 compared to all the scaling.

Our conclusion about roughness analysis is an ob-
served exponent value χ = 0.60 ± 0.10. This value is not
comparable with values expected based on the literature,
since it is both above the RW value and slightly below
the slow fracture simulation model results. Therefore, the
question arises: since the front is a consequence of crack
tip propagation, how are its fluctuations correlated and
are there any other measures than the roughness expo-
nent, that could yield information on the dynamics?

For small roughness values w (e.g. as measured by the
standard deviation methods) one has to consider the in-
fluence of any structural details on the same scale. To this
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nation of samples 1, 2, and 3. Subfigure shows directed length
distributions for each sample.

end, we compute the front height differences ∆h(L) =
〈hi − hi+L〉 for different window lengths L to describe
the short scale behavior of fracture. Very large changes in
height are rare and the distribution becomes finally close
to a normal distribution (Fig. 4 for L = 1 (0.042 mm)
and L = 64 (2.7 mm) pixels) with increasing L. The his-
tograms are close to symmetric, and the skewness is small.
Such steps as measured by ∆h may or may not be corre-
lated over some lengthscale ξ as outlined before.

Both any naive picture of an advancing crack tip and
the random walk analogies make it natural to measure the
“persistence” or the local trends in the crack line. Thus
we next investigate the statistics of monotonic regions in
the crack lines. Such a region is a continuous sequence of
either positive or negative height changes, say hi ≥ hi+1.
For a RW such a distribution is exponential (straight line
in Fig. 5). Evidently the distribution in our samples is not
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Fig. 6. First-return histograms for the samples 1, 2, and 3.

exponential. This implies either an increasing tendency to
continue to the same direction or e.g. a cross-over from 3d
effects to purely 2d propagation. This analysis is very sen-
sitive to global height trends on the scale that the statis-
tics would indicate. An analysis of the auto-correlation
function of the increments ∆h(1) indicates that the step-
step correlations vanish over a lengthscale of about 1 mm,
that is, close to the fiber length. The first-return prop-
erties P1st(r) of the surfaces are measured for all x0, by
the distance at which the interface returns for the first
time to the position at x0. That is, if r(x) = r0 it im-
plies that e.g. h(y) > h(x0) for x0 < y < x + r0, and
h(x+ r0) ≤ h(x)). P1st(r) are shown in Figure 6. At short
scales, they are in qualitative agreement with e.g. the zmax

method. The data implies an effective roughness exponent
closer to unity, than the overall χ, slightly above 0.85 per-
haps. This could be taken to imply that the cracks are
actually three-dimensional on short scales due to the sim-
ilarity with the “universal” 3d roughness exponent [2]. On
scales up from several millimetres the first return proper-
ties seem to reflect more the large-scale trends than the
self-affine properties. For a self-affine signal the expecta-
tion is P1st(r) ∼ r2−χ [21]. The values of r are as a matter
of fact sometimes highly correlated, due to the large-scale
variations of the fracture lines (see Fig. 2) that induce
correlations in x among the large r(x)-values.

A more robust similar statistics for the trends in the
fluctuations is to fit straight lines with varying window
size and calculate the standard deviation of the slopes
(Fig. 8). The method results in a series of slopes ki, such
that since the window is moved by one pixel at a time the
values of ki are evidently correlated. By comparing two
values kj , km such that |m − j| equals the window size
one can analyze coarse-grained trends in the crack line
on a scale defined by the window. The difference kj − km

tells about how the slope changes on such a scale, and
can be compared e.g. to randomized differences obtained
from P (k, l). Figure 7 shows that sample 2 has strong
fluctuations up to a lengthscale of about 5 mm, after which
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Fig. 7. On the left distribution of the length of straight lines.
On the right the standard deviation of least square fit slope
with varying fit length.

the variation drops rapidly. In samples 1 and 3 we notice a
lower level of fluctuations. Such scales might be related to
the so-called floc size in paper [22] or to differences in the
state of the web during the fracture. Note that the trends
are similar in samples 1 and 3, which also exhibit similar
roughness scaling by all the methods tested.

Another idea of analysis is a method that fits series of
lines with varying lengths by the least squares method, so
that the length of the line is increased by one as long as
the largest deviation between the line and the data is less
than 0.5 pixel. The idea is based on the fact that scanned
crack lines are digitized to integer height values. We start
at h0 with line length l = 2. After that we set the starting
point to the end of the previous line and start fitting a
new line. A series of straight lines is fitted to data so that
by rounding the original height profile is reconstructed
completely. The distribution of line lengths is similar in
samples 1 and 3 and clearly different in sample 2 (Fig. 7).
The decay of the variation with line length is in reasonable
agreement with the idea, that the slopes on scale l are
related to the ratio lχ/l, in all the three cases separately,
even, as one would expect given that the average slope of
such lines should be proportional to the roughness in the
given window.

4 Summary

To conclude, we have investigated the roughness prop-
erties of three very large samples of 2D crack surfaces.
The material, industrial paper, contains disorder which
interacts with an advancing crack. It is a matter of taste
whether one considers the data to imply that all the sam-
ples have the same exponent, or that in one the exponent
is slightly lower and close to the RW one. We obtain for all
the samples that the roughness is of power-law type, with
an exponent that is larger than a pure RW value, and
slightly below of what one might expect for slow static
fracture in 2D. Recall that for minimum energy surfaces
χ2d = 2/3, while for scalar fracture models the effective
exponent is of the order of 0.7 [10]. In this respect, it may
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again be of importance that one of the samples exhibits a
smaller value of χ, in general. These models would assume
slow, quasi-static growth dynamics which evidently is not
valid, at least strictly speaking.

The actual differences in the measured quantities and
among the samples can be traced to two separate origins.
The effect of the different length scales (3d fracture on
short distances, local structure fluctuations over a few mm
at most) is reflected in all the three samples. In particular,
the short-scale scaling of the roughness seems sometimes
directly to imply a χSR which is close to the 3D static
fracture one (0.8) [2]. It seems likely that the sample-to-
sample variations reflect not any microscopic material dif-
ferences, but the varying stress states during the three
fracture processes. These may originate eg. from the air
flows (“fluttering”) peculiar to each case, that produce
out-of-plane fluctuations.

The scale invariance is in line with the qualitative ob-
servations about trends in the lines. The microstructural
aspects can be noticed in the roughness statistics as well:
the crack lines have large jumps on the discretization scale,
and the asymptotic scaling is only obtained beyond any
fluctuation scale that would overlap with the jump sizes.
This is similar to what has been observed for fracture sur-
faces in polymers [23]. Our results have further theoreti-
cal implications: an unstable crack interacting with disor-
der creates rough surfaces, in the presence of no extensive
branching. The first-return properties and the statistics of
trends present interesting issues for further study.

MA and LS would like to thank the Academy of Finland, Cen-
ter of Excellence program for financial support.
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